ar X iv : 0 90 8 . 15 57 v 4 [ m at h . FA ] 1 5 A ug 2 00 9

نویسنده

  • JIE XIAO
چکیده

An affine rearrangement inequality is established which strengthens and implies the recently obtained affine Pólya–Szegö symmetrization principle for functions on R. Several applications of this new inequality are derived. In particular, a sharp affine logarithmic Sobolev inequality is established which is stronger than its classical Euclidean counterpart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 8 . 27 37 v 1 [ m at h . G R ] 1 9 A ug 2 00 9 On Bruck Loops of 2 - power Exponent , II ∗

As anounced in [BSS], we show that the non-passive finite simple groups are among the PSL2(q) with q − 1 ≥ 4 a 2-power.

متن کامل

ar X iv : 0 90 4 . 23 13 v 1 [ m at h . FA ] 1 5 A pr 2 00 9 A DISCRETIZED APPROACH TO W . T . GOWERS ’ GAME

We give an alternative proof of W.T. Gowers' theorem on block bases in Banach spaces by reducing it to a discrete analogue on specific count-able nets.

متن کامل

ar X iv : 0 90 4 . 21 57 v 1 [ m at h . FA ] 1 4 A pr 2 00 9 Asymptotic almost - equivalence of abstract evolution systems

We study the asymptotic behavior of almost-orbits of abstract evolution systems in Banach spaces with or without a Lipschitz assumption. In particular, we establish convergence, convergence in average and almost-convergence of almost-orbits both for the weak and the strong topologies based on the behavior of the orbits. We also analyze the set of almost-stationary points.

متن کامل

ar X iv : 0 90 8 . 20 79 v 1 [ m at h . C V ] 1 4 A ug 2 00 9 SPECTRAL GAPS FOR SETS AND MEASURES

If X is a closed subset of the real line, denote by GX the supremum of the size of the gap in the Fourier spectrum, taken over all non-trivial finite complex measures supported on X. In this paper we attempt to find GX in terms of metric properties of X.

متن کامل

ar X iv : m at h / 05 01 13 9 v 2 [ m at h . FA ] 1 A ug 2 00 5 Stability of Adjointable Mappings in Hilbert C ∗ - Modules ∗

The generalized Hyers–Ulam–Rassias stability of adjointable mappings on Hilbert C∗-modules is investigated. As a corollary, we establish the stability of the equation f(x)∗y = xg(y)∗ in the context of C∗-algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009